University of Minnesota Driven to Discover

Recently in Intelligent Transportation Systems (ITS) Category

New fuel cell prototype could power rural ITS applications

| No Comments

Intelligent transportation systems (ITS) technologies can be used to enhance transportation safety and mobility, but the sensors and communications equipment needed for ITS applications typically require access to electricity. In rural areas, limited access to the power grid can make it challenging to implement ITS devices.

Current solutions for providing power to off-grid locations include battery packs or diesel generators, both of which require constant maintenance to recharge, refuel, or replace. Other alternatives include solar panels and wind turbines, but cost and performance concerns have limited their use.

fuelcell.jpg

"One of the issues with these green power alternatives, such as solar panels, is dependability... especially in the long, cold, and dark Minnesota winters," says Victor Lund, a traffic engineer with St. Louis County Public Works. Until this technology matures, there is a need for other options that can provide confidence in generating power, Lund says.

To provide a more effective and dependable power alternative, researchers from the University of Minnesota Duluth (UMD) have developed a portable prototype system that uses hydrogen-based fuel cells to generate electricity. The UMD research team was led by chemical engineering associate professor Steven Sternberg, and the project was sponsored by the ITS Institute.

The hydrogen-based fuel cell provides a clean, compact, high-efficiency energy source for an accompanying battery pack, which could be used to operate various ITS devices. The prototype is completely independent of the power grid, works well in cold weather, and requires maintenance only once each week for recharging. The cost of the system is about $7,500, with an additional operating cost of $2,000 per year for fuel materials.

Potential applications include powering variable message signs, dedicated short-range communication technologies, and warning blinkers on traffic signs. According to Lund, the system's applications extend beyond powering ITS devices. For instance, the fuel cells could be used for rural intersection roadway lighting or as a back-up source for traffic signals in case of a power outage.

Reprinted from CTS Catalyst, June 2013.

Photo source: http://www.flickr.com/photos/36521983488@N01/175482261/

Searching for common ground in the ITS privacy debate

| No Comments

Should your vehicle be able to gather, store, or transmit information about where it's been--or where it's going? On the surface, it seems like a simple question. However, it inevitably gives rise to many others: Who will see the data? How will it be used? Can it be given or sold to a third party? Under what circumstances? Clearly, there are no straightforward solutions or answers in the debate surrounding privacy issues in intelligent transportation systems (ITS).

"The difficulty and complexity of these issues has resulted in an increasingly disconnected public discussion about privacy and ITS," says Frank Douma, a researcher in the Humphrey School of Public Affairs. "In one camp are privacy advocates, and in the other camp are technologists and the ITS industry, who generally view privacy issues as secondary when compared with the tremendous benefits of these technologies. The disconnect often results in the two sides talking past each other, with too little energy spent finding potential common ground."

According to Douma, one cause of this disconnect is a lack of clarity on both sides about the needs, goals, and interests of those involved. To address this divide, a multidisciplinary team of U of M researchers has published a report that sheds new light on the ITS privacy debate by mapping and assessing the interests of all participants. The team was led by Douma and research assistant Tom Garry, and the project was sponsored by the ITS Institute.

ITS_privacy_debate.jpg

The ITS privacy debate involves an interlaced web of participants with multiple interests.

Researchers began their analysis by pinpointing exactly who should be concerned about privacy as ITS technologies are developed and implemented and what their goals are with respect to privacy data. A number of diverse participant groups were identified, including ITS developers, transportation users, the government, data collectors, data users, and secondary users such as marketers and litigants.

"We found few black-and-white divides among participants in the privacy debate," says Douma. "For example, transportation users are not simply pro-privacy, and data collectors are not inherently anti-privacy. Individuals are willing to share their locational data in exchange for real benefits in a variety of circumstances, such as GPS guidance or electronic tolling. However, there are also limits to this willingness."

Because of this nuanced landscape, researchers concluded that while there is no all-encompassing solution to the ITS privacy debate, there are a number of potential avenues and tools for finding common ground. Their recommendations include setting limits on the time data can be retained, prohibiting unrelated secondary use of data, designing ITS systems with privacy in mind, avoiding the collection of personally identifiable locational information when possible, and implementing privacy policies such as the use of clear privacy notices.

"It's also important to remember that the positions of participants in this debate are not entrenched," says Douma. "As technology changes, privacy expectations will also likely evolve as well, such that what may seem important today is less so, and something we are not considering today could be critically important in the future. Consequently, it's very important that this conversation continue in the years to come."

Reprinted from the CTS Catalyst, May 2013.

New vehicles today are sophisticated driving machines--and they're also becoming rich sources of information. Sensors collect data about everything from how fast you're going to when the wipers kick in. At the same time, GPS navigation systems and the infrastructure built for mobile devices are making it increasingly possible to track where vehicles are and gather vast amounts of data. What does this mean for safety? Capturing the actual behavior of drivers could lead to a "behavioral map" revealing how drivers dynamically experience and adapt to road networks--and give engineers and designers insight for creating a safer driving experience. Read more in April Catalyst.

Archives

Center for Transportation Studies

University of Minnesota

200 Transportation & Safety Building

511 Washington Ave SE

Minneapolis, MN 55455

Phone: 612-626-1077

Fax: 612-625-6381

E-mail: cts@umn.edu

Location & Contact Information