Moving bikes stay upright - but not for the reasons we thought

Ars Technica reports: Moving bikes stay upright - but not for the reasons we thought

The phrase "just like riding a bike" is used to refer to something that, once learned, you never forget how to do. As it turns out, bikes make that easy on us. If a typical bicycle is moving forward fast enough, it tends to remain upright and steer in a straight line, even if the rider takes his or her hands off the handlebars. In fact, you can set a bicycle rolling without a rider at all, and it tends to remain upright and roll in a straight line.


To test the relative contributions of these factors, the authors eventually built their own computer model of a bicycle and started playing around with various features. It turned out that they could eliminate both the gyroscopic and the negative trail factors, and the bike would still be stable as long as it was moving faster than 2.3 meters (7.5 feet) per second. They could even move steering to the rear wheel and produce a stable design.

The apparently unreasonable stability of different bicycle designs must have suggested that their model had probably lost touch with reality, so the authors went out and built a bike with a counter-rotating wheel to get rid of gyroscopic effects, as well as a negligible (4mm) trailing between the front wheel and the steering. As their model predicted, it tended to stay upright, and would steer into any falls that their grad students tried to induce.

What their math can't apparently tell them is why so many different bike designs tend to stay upright. "Why does this bicycle steer the proper amounts at the proper times to assure self-stability?" they muse. "We have found no simple physical explanation equivalent to the mathematical statement that all eigenvalues must have negative real parts." In other words, they can see why the math works out the way it does, but can't figure out what physical properties correspond to that.

The best they can surmise is that the stability is related to the ability of the bike to steer into a fall if it starts to lean, and that there are multiple ways of constructing a bike that does this.

Science, 2011. DOI: 10.1126/science.1201959

David Levinson

Network Reliability in Practice

Evolving Transportation Networks

Place and Plexus

The Transportation Experience

Access to Destinations

Assessing the Benefits and Costs of Intelligent Transportation Systems

Financing Transportation Networks

View David Levinson's profile on LinkedIn

Subscribe to RSS headline updates from:

About this Entry

This page contains a single entry by David Levinson published on April 19, 2011 9:08 AM.

Should there be a National Transit System Redux? was the previous entry in this blog.

Beautiful U Day : University of Minnesota is the next entry in this blog.

Find recent content on the main index or look in the archives to find all content.


Monthly Archives


Powered by Movable Type 4.31-en